
Engineering Excellence 1

Software Development Best Practices for
Human-Rated Spacecraft

Project Management Challenge 2008
Daytona Beach, Florida
February 26 - 27, 2008

Michael Aguilar
NASA Engineering and Safety Center

Engineering Excellence 2

• In late 2005, the NASA Engineering and Safety Center
(NESC) was asked by the Astronaut Office to answer
the basic question:

Background

"How do you know you have a safe
and reliable system?"

Full report available on-line at: nesc.nasa.gov

Engineering Excellence 3

Trends In Space Vehicle Software Size

Engineering Excellence 4

Software Reliability

There are two major approaches to increasing the reliability of
software:

• Software defect prevention (fault avoidance): using a
disciplined development approach that minimizes the
likelihood that defects will be introduced or will remain
undetected in the software product

• Software fault tolerance: designing and implementing the
software under an assumption that a limited number of
residual defects will remain despite the best efforts to
eliminate them

Engineering Excellence 5

Software Defect Prevention

Using a disciplined development approach that
minimizes the likelihood that defects will be
introduced or will remain undetected in the
software product.

Engineering Excellence 6

Software
Architectural Design

System
Integration

System
Architectural Design

System

Requirements

Software
Requirements Analysis

Software
Qualification Testing

Software Integration

System
Qualification Testing

Software
Unit Testing

Software Coding

Software
Detailed Design

Ideal Software Development Process

Engineering Excellence 7

Allocation of Causes of Major Aerospace System
Failures by Phase

XXXXXDeficiencies in safety-related information collection and
use

XXTest and simulation environments that do not match the
original environment

XXOperational personnel not understanding automation

XXXXUnnecessary complexity and software functions

XXXXXSoftware reuse without appropriate safety analysis

XXXXXViolation of basic safety engineering practices in the digital
parts of the system

XXXXXInadequate safety engineering

XXXXXFlawed review process

XInadequate specifications

XXXInadequate engineering

XXXXXIgnoring early warning signs

XXAssuming that risk decreases over time

XXConfusing reliability and safety

XXOver relying on redundancy

XXXNot understanding the risks associated with software

XXXXOverconfidence and over reliance in digital automation

Test & IntegrationImplementationSW DesignArch. Def.Reqts Def.

PhaseCause of failures

Engineering Excellence 8

Requirements Validation
• Modeling and simulation: Modeling and simulation should be

used to set and evaluate performance parameters requirements
affecting software performance, quality of communication services in
the data transport layers, requirements for responses to failures and
anomalous conditions, and human/software or system interactions.

• Non-advocate software and system requirements reviews:
Reviews by knowledgeable third parties can uncover problems or
issues that may have been overlooked by the primary requirements
developers.

• Use of relevant “golden rules” and “lessons learned”: Golden
rules or lessons learned are excellent sources of requirements and
should be reviewed as part of the requirements validation process.

• Hazards and Safety analyses: Hazards analyses, such as Failure
Modes and Effects Analyses and Fault Trees.

Engineering Excellence 9

Requirements Verification

• Early planning: Assure adequate planning for simulation test beds,
communications equipment, test tools and data collection devices.

• Verification methods for low observable parameters:
Instrumentation methods development for throughput, response
time, or reliability.

• Anticipating ephemeral failure behaviors: The verification
strategy should anticipate failure behaviors and plan for how this
information can be captured – particular if they are ephemeral and
non-reproducible.

• Testing of diagnostics and failure isolation capabilities:
Diagnostic and fault isolation capabilities for off-nominal behavior.

• Capturing of unanticipated failures or behaviors: Ensure that
test plans and procedures have provisions for recording of
unanticipated behaviors.

Engineering Excellence 10

Requirements Management

• Gathering resources for software test and verification:
Assembling modeling and simulation capabilities, domain expertise,
identifying areas of uncertainty

• Scheduling of software test and verification: The software test
and verification program commonly includes managing critical path
scheduling pressures.

• Tracking and maintaining requirements throughout the
development process: Newly discovered software requirements
should be propagated back into the higher level software and
systems requirements documentation, and changes in existing
requirements should be documented and tracked.

• Configuration Management of software requirements: Ensure
that changes to software requirements are controlled and that when
changes are made, they are propagated to all entities and
stakeholders involved in the project.

Engineering Excellence 11

Software Architecture Trades

• Distributed vs. centralized architectures: Distributed single point
transmission failures such as undetected or unregulated message
delays, or loss of synchronization in replicas of common data.
Centralized architectures are vulnerable to failures in the central
node of a centralized system.

• Extent of modularity: Uncoupled development, integration of
revised components, and utilization of previously developed (or
commercial off the shelf) components traded against increases the
number of interfaces.

• Point-to-point vs. common communications infrastructure: The
reduction of interdependencies among software elements and use of
common inter-process communications constructs traded against
vulnerabilities in terms of lost or delayed messages, message
integrity, and message validity.

Engineering Excellence 12

Software Architecture Trades

• COTS or reused vs. reused/modified vs. developed
software: Reliability benefits are the ability to begin early test
and integration of such software.
• An understanding of the operational condition differences,

constraints and tradeoffs are necessary. In safety critical
applications, uncertainties about undocumented design
decisions and tradeoffs embodied in the code may necessitate
redevelopment.
• Ariane 5 booster loss (inertial reference software re-use)
• Magellan spacecraft (GNC software re-use from a DSCS satellite).

• Verification of the suitability of the re-used software components
by means of assessment of operational service history, the
applicability of the allocated requirements to the published
capabilities of the software, compatibility with other runtime
elements, and proper version numbers.

Engineering Excellence 13

Software Design

• Traceability: Requirements should be traceable to the
functional elements or classes defined in the design.

• Exception handling and other failure behaviors: Exception
handlers should consider all failure conditions defined in the
requirements and in safety analyses. Where possible,
exceptions should be handled as close to the locations in the
code where they are generated.

• Diagnostics capabilities: Special attention should be paid
to response time anomalies, priority inversion, and resource
contention. The diagnostic capability of the system as a
whole will largely depend on the diagnostic capabilities in all
of the constituent software components.

Engineering Excellence 14

Software Design

• Implementation language: The implementation language and
runtime environment (including virtual machines) should be capable
of realizing the design.

• Interfaces: Interfaces among software modules should be
completely defined and include not only arguments for the inputs
and outputs of the function or object itself but also additional
parameters for status, error handling, and recovery. Interfaces
should be designed “defensively”.

• Class library definition and inheritance: For object oriented
architectures the definition of base and derived classes should
be consistent and traceable to both the requirements and the
architecture.

Engineering Excellence 15

Software Design

• Compatibility with hardware and resource constraints: The
software allocated to each hardware element should conform to
memory, processor capacity, and interface constraints

• COTS and Non-developmental runtime elements: Existing
software components and runtime elements should be
configuration controlled, well characterized with respect to the
intended use, and fully documented

• Automated Coding Tools: Newer techniques based on object
oriented design or model-based development have resulted in
tools that can go directly from design to executable code.

– Among the advantages are the ability to generate an executable
design that can be evaluated prior to detailed coding.

– Among the concerns is the quality of the automatically generated
code, particularly with respect to off-nominal conditions or inputs.

Engineering Excellence 16

Code Implementation

• Use of “safe” subsets for safety or mission critical functions:
Modern languages such as Ada, C, C++ and Java have safe
subsets defined (or in the process of being defined) for their use in
safety critical applications.

– Disadvantages of such subsets is implementation in the language
requires more source code which both reduces productivity (thereby
adding to development cost), complicates software maintenance, and
discourages reusability.

• Routine or class libraries, and runtime environments: The
runtime libraries and other environmental components that support
the developed software should conform to the constraints of the
architecture and design and should provide the necessary
capabilities to support desired failure behavior – including

– Reliability, performance, throughput
– Failure response, detection and recovery
– Diagnostics requirements

Engineering Excellence 17

Code Implementation

• Definition of suitable coding standards and conventions: Coding
standards and conventions can enhance reliability by considering such
issues as

– Policies on dynamic memory allocation in safety critical systems (generally, it
should not be allowed)

– Policies on the use of “pointers”
– “Defensive” coding practices for out of range inputs and response times
– Exception handler implementation
– Coding to enhance testability and readability
– Documentation to support verification
– Interrupt versus deterministic timing loop processing for safety critical software
– Policies on allowable interprocess communications mechanisms (e.g., point to

point vs. publish and subscribe)
– Permitted use of dynamic binding (an alternative is static “case statements”)
– Policies on initialization of variables (some standards prohibit assignment of

dummy values to variables upon initialization in order to enable detection of
assignment errors in subsequent execution)

– Use of “friend” (C++) or “child” (Ada) declarations to enable testing and
evaluation of encapsulated data code during development without requiring the
subsequent removal of “scaffold code”.

Engineering Excellence 18

Code Implementation

• Coding tools and development environments: Coding tools and
integrated development environments can be used to for many
purposes including automated documentation generation,
enforcement of coding standards, debugging, diagnosis of
potentially troublesome coding practices, cross reference listing,
execution profiles, dependency analysis, design traceability, and
many other purposes.

• Configuration management practices: Defect tracking and
configuration management practices for software units and higher
levels of integration should be defined to avoid uncertainty in the
actual configuration of the software.

Engineering Excellence 19

Test and Inspection of Code

• Code execution: Numerous methods for verification of executable code
(see next slides), however code execution testing can not cover all possible
code execution states

• Code inspections: Code inspections by knowledgeable individuals can
find and fix mistakes overlooked in the initial programming. Another form of
code inspection is the use of automated code analysis tools. Other types of
reviews may occur in conjunction with code reviews including
“walkthroughs” and “code audits”

• Formal methods: Testing is often insufficient to provide the necessary
degree of assurance of correctness for safety critical software. Formal
methods use mathematical techniques to prove the specification, the
verification test suite and also automatic code generators to create the
software. The NASA Langley Research Center has been active advancing
formal methods, and extensive information is available from their web site.

• Cleanroom technique: The cleanroom technique was developed as an
alternative approach to producing high quality software by preventing
software defects by means of more formal notations and reviews prior to
coding. The cleanroom technique has been used in several projects
included the NASA/JPL Interferometer System Integrated Testbed.

Engineering Excellence 20

Types of Software Tests (1 of 2)

Unit, Software
subsystem

Black
&
White
box

Same as boundary valueExtreme value testing (a subcategory of negative
testing): testing for large values, small values,
and the value zero

Unit, Software
subsystem

Black
&
White
box

Test error detection and exception handling
behavior of software with anticipated
exception conditions – whether software test
item exits gracefully without an abnormal
termination and for correctness

Boundary value testing (a subcategory of
negative testing): Test the software with data at
and immediately outside of expected value
ranges

AllBlack
&
White
box

Challenge or “break” the system with the
objective of testing fail safe and recovery
capabilities

Robustness testing (a subcategory of negative
testing): Testing with values, data rates, operator
inputs, and workloads outside expected ranges

Integrated
software and
system

Black
box

Measure capacity and throughput, evaluate
system behavior under heavy loads and
anomalous conditions, to determine workload
levels at which system degrades or fails

Stress testing (a subcategory of negative testing):
Testing with simulated levels of beyond normal
workloads or starving the software of the
computational resources needed for the
workload; also called workload testing (usually
run concurrently with endurance tests)

AllBlack
box

Verify conformance with nominal
requirements

Nominal testing: Testing using input values
within the expected range and of the correct type

All level at which
requirements are
defined

Black
box

Determine whether the software meets specific
requirements

Requirements based testing: Testing to assess
the conformance of the software with
requirements

Integrated
software and
system

Black
box

Assess overall conformance and dependability
in nominal usage

Scenario (also called thread) based testing:
Testing using test data based on usage scenarios,
e.g., simulation of the mission

Applicable levelTest
type

ObjectiveMethod type and description

Engineering Excellence 21

Types of Software Tests (2 of 2)

Software unit
(assembly code
created by
compiler under
some
circumstances)

White
box

Test for safety critical software where a failure
would probably or almost inevitably result in a
loss of life

Modified condition decision coverage (MCDC):
Coverage–Every point of entry and exit in the
program has been invoked at least once, every
condition in a decision in the program has taken
all possible outcomes at least once, every
decision in the program has taken all possible
outcomes at least once, and each condition in a
decision has been shown to independently affect
that decision’s
outcome.

Software unitWhite
box

Test correctness of code to the level of pathsPath testing: Test cases selected to test each path
(i.e., feasible set of branches) at least once. Also
called flow graph testing

Software unitWhite
box

Test correctness of code to the level of
branches

Branch testing: Test cases selected to test each
branch at least once

Integrated
software

Black
&
White
box

Assess failure behavior, ensure that system
properly responds to component failures

Fault injection testing: Testing on the nominal
baseline source code and randomly altered
versions of the source (white box) or object code
(black box)

Integrated systemBlack
box

Assess overall stability, reliability and
conformance with requirements

Random testing: test software using input data
randomly selected from the operational profile
probability distribution

Applicable levelTest
type

ObjectiveMethod type and description

Engineering Excellence 22

Testing Saturation

Multiple
testing
methods
increase
detection of
software
faults

Engineering Excellence 23

Reliability Estimation

Reliability
based upon
detected
software
failures can be
misleading

Engineering Excellence 24

Software Fault Tolerance

Designing and implementing the software under
an assumption that a limited number of residual
defects will remain despite the best efforts to
eliminate them.

Engineering Excellence 25

Replication

• Replication: The executing redundant copies of software
as an architecture level concept.

– static redundancy: all copies of the executing program are
provided with the same input and produce the same output.
The output is chosen by a default selection of one of the
channels or by comparing or voting on the output. The
primary challenge for this form of replication is
synchronization of the input or the output.

– dynamic redundancy: one of the copies is assigned the
active or “hot” role and other copies are in a standby role.
The designation of “dynamic” is related to the fact that
changing roles requires a change in the state of the
software.

Engineering Excellence 26

Exception Handling

• Exception handling: The ability of the software to detect
(exception “raised” or “thrown”) and handle (exception
handled or “caught) abnormal conditions in a controlled
manner which allows for continued operation or a safe
shutdown and is an architectural or design-level
concept.

– Examples of responses include rollback and retry,
substituting a default value, using a previous value,
proceeding with processing without the input value,
stopping processing, raising an alarm condition, sending a
message to a user (or another software process) requesting
an instruction on further action, or safe shutdown.

Engineering Excellence 27

Multiversion Software

• Multiversion software: The independent generation of
functionally equivalent programs, called versions, from
the same initial specification. Independent generation of
programs means that the programming efforts are carried
out by different individuals or groups, using different
programming languages and algorithms wherever
possible. If three or more versions are developed, then
voting logic can be implemented.

– Even if the versions are developed independently, they
suffer from correlated failures

– Maintenance of multiple versions must be managed for all
defect corrections and upgrades

Engineering Excellence 28

Recovery Blocks

• Recovery blocks: Structures that consist of three
elements: a primary routine, an alternate routine, and a
runtime acceptance test. If a primary routine is not
capable of completing the task correctly, then an
alternate routine can be invoked to mitigate the effects of
the failure. The acceptance test determines whether the
primary routine failed.

– The primary and alternative routines can run sequentially or
concurrently.

– Recovery blocks are resource intensive not only in
development, but also in subsequent maintenance and
runtime resources.

Engineering Excellence 29

Computer Aided Software Engineering
(CASE)

GSFC James Web Space Telescope
CASE experience

Engineering Excellence 30

JWST Full-Scale Model

Engineering Excellence 31

“Real” Software Development Process

Engineering Excellence 32

JWST Software Development Toolset

• Requisite Pro
– Requirements Tracking
– Requirements Tracing

• Project Requirements
• Test Cases
• Personnel Assignments

• Clear Quest
– Change Management and Tracking
– Integrated with Requisite Pro and Clear Case

• Clear Case
– Configuration Management

• Rational Rose Real Time
– FSW Generation

Engineering Excellence 33

JWST Experience
Unified Modeling Language (UML)

• Scientists and Operators presented their requirements to JWST
software developers in UML Use Case and Sequence Diagrams

• Review diagrams consistent within peer reviews
– Review material consisted of minimal meeting package
– Design was reviewed, projected directly out of the development

environment
• Statechart Diagrams, Sequence Diagrams, and Timing

Diagrams presented to Instrument developers to define
software/hardware interface

• Design document described each and every software build
exactly

Engineering Excellence 34

JWST Software Integration Experience

• External software developers supplied with identical tool suite and
hardware development environment

– Rational ROSE tool suite, COTS C&DH hardware, Ground system, Database

• Complete C&DH model is supplied to NASA developers
• Library of C&DH model is supplied to ITAR restricted developers
• Integration of the C&DH model and instrument application specific

model occurs for all development teams at the model level
• Training, lessons learned, support and guidance shared across all

development teams due to identical environments and
development tools

• Review presentation material was similar in content across all
external and internal reviews

Engineering Excellence 35

JWST Code Generation Experience

• Generated code is at interface between drivers, board-
support package, OS, and state machine framework

– Drivers, board-support package, OS configuration, and application
specific functions are all hand coded

– State machine diagrams provide structure to the reactive system
– Source code for entire system is generated and available for

analysis
• Minor and major alterations to system statemachine can be

accomplished with little effort producing a robust
statemachine after modification

• Minor defects and changes to functionality are
accomplished with similar effort to hand coded
implementation

• Static code analysis was performed on JWST source code
(250K LOC) uncovering 60 defects

– far below industry metrics for code defect density

